Responses of Muscle Mitochondrial Function to Physical Activity: A Literature Review

Document Type: Review Article


Physiologist, Department of Exercise and Sport Physiology, Faculty of Sport Sciences, Toos Institute of Higher Education, Mashhad, Iran


Skeletal muscles play an active role in regulating the metabolic homeostasis through their ability for relating to adipose tissue and endocrine hormones. Contraction of the skeletal muscle leads to increased release of several myokines, such as irisin, which is able to interact with the adipose tissue. Physical activity promotes the irisin mechanism by augmenting the peroxisomes (PGC1-α) in the skeletal muscle. Afterwards, an elevation occurs in the membrane protein of fibronectin type III domain-containing protein 5 (FNDC5) in muscle, ultimately resulting in production of irisin. The expression of irisin and FNDC5 converts white adipose into the brown type and increases energy consumption by the whole body hindering obesity and diabetes. The effects of regular exercise training on preventing obesity, diabetes, and the related complications, as well as improving health have already been proven. However, the point is that these beneficial effects are due to the cellular-molecular mechanisms, which are still under discussion.
In this review, we searched the online databases, including scientific information database (SID), Google Scholar, PubMed, Science Direct, and Scopus. The following keywords were used: training, physical activity, myokine, adipose tissue, PRDM16, PGC-1α, PPARγ, SIRT1, FGF21, bone morphogenetic protein, neurugolin, VEGF, and IL-15. All the articles, including research studies, review articles, descriptive and analytical studies, in addition to cross-sectional researches published during 1998-2017 were reviewed.
According to the obtained results, it seems that expression of irisin and FNDC5 converts the white adipose into brown adipose resulting in increased energy consumption. It has been proven in the literature that regular exercise training prevents obesity, diabetes, and the related complications, as well as improving health.



1.         Granneman JG, Li P, Zhu Z, Lu Y. Metabolic and cellular plasticity in white adipose tissue I: effects of β3-adrenergic receptor activation. American Journal of Physiology-Endocrinology and Metabolism. 2005;289(4):E608-E16.

2.         Wronska A, Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiologica. 2012;205(2):194-208.

3.         Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiological reviews. 2004;84(1):277-359.

4.         Lee P, Greenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. American Journal of Physiology-Endocrinology and Metabolism. 2010;299(4):E601-E6.

5.         Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-[agr]-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463-8.

6.         Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proceedings of the National Academy of Sciences. 2009;106(48):20405-10.

7.         Xu X, Ying Z, Cai M, Xu Z, Li Y, Jiang SY, et al. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2011;300(5):R1115-R25.

8.         Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease. Nature. 2008;454(7203):463-9.

9.         Haas B, Schlinkert P, Mayer P, Eckstein N. Targeting adipose tissue. Diabetology & metabolic syndrome. 2012;4(1):43.

10.       Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156(1):304-16.

11.       Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D, et al. Acquirement of brown fat cell features by human white adipocytes. Journal of Biological Chemistry. 2003;278(35):33370-6.

12.       Zafrir B. Brown adipose tissue: research milestones of a potential player in human energy balance and obesity. Hormone and metabolic research. 2013;45(11):774-85.

13.       Braissant O, Wahli W. Differential expression of peroxisome proliferator-activated receptor-α,-β, and-γ during rat embryonic development. Endocrinology. 1998;139(6):2748-54.

14.       Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829-39.

15.       Zhang W, Sunanaga J, Takahashi Y, Mori T, Sakurai T, Kanmura Y, et al. Orexin neurons are indispensable for stress‐induced thermogenesis in mice. The Journal of physiology. 2010;588(21):4117-29.

16.       Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature. 2013;495(7441):379.

17.       Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang A-H, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366-76.

18.       Vegiopoulos A, Müller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science. 2010;328(5982):1158-61.

19.       Boström P, Wu J, Jedrychowski M, Korde A, LY JC, L KA. A PGC1α-dependent myokine that drives browning of white fat and thermogenesis. Nature. 2012;481(7382):463-8.

20.       Sanchez-Delgado G, Martinez-Tellez B, Olza J, Aguilera CM, Gil A, Ruiz JR. Role of exercise in the activation of brown adipose tissue. Annals of Nutrition and Metabolism. 2015;67(1):21-32.

21.       Vosselman MJ, Brans B, van der Lans AA, Wierts R, van Baak MA, Mottaghy FM, et al. Brown adipose tissue activity after a high-calorie meal in humans. The American journal of clinical nutrition. 2013;98(1):57-64.

22.       Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL, et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes & development. 2008;22(10):1397-409.

23.       Elsen M, Raschke S, Tennagels N, Schwahn U, Jelenik T, Roden M, et al. BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells. American Journal of Physiology-Cell Physiology. 2014;306(5):C431-C40.

24.       Bordicchia M, Liu D, Amri E-Z, Ailhaud G, Dessì-Fulgheri P, Zhang C, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. The Journal of clinical investigation. 2012;122(3):1022.

25.       Cantó C, Auwerx J. FGF21 takes a fat bite. Science. 2012;336(6082):675-6.

26.       Liu W, Bi P, Shan T, Yang X, Yin H, Wang Y-X, et al. miR-133a regulates adipocyte browning in vivo. PLoS genetics. 2013;9(7):e1003626.

27.       Ye L, Kleiner S, Wu J, Sah R, Gupta RK, Banks AS, et al. TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell. 2012;151(1):96-110.

28.       Kajimura S, Saito M. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annual review of physiology. 2014;76:225-49.

29.       Wang W, Kissig M, Rajakumari S, Huang L, Lim H-w, Won K-J, et al. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proceedings of the National Academy of Sciences. 2014;111(40):14466-71.

30.       Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell. 2012;150(3):620-32.

31.       Zhou Y, Peng J, Jiang S. Role of histone acetyltransferases and histone deacetylases in adipocyte differentiation and adipogenesis. European journal of cell biology. 2014;93(4):170-7.

32.       Lo KA, Sun L. Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Bioscience reports. 2013;33(5):e00065.

33.       Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. Journal of Biological Chemistry. 2010;285(10):7153-64.

34.       Medina-Gomez G, Gray S, Vidal-Puig A. Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor γ (PPARγ) and PPARγcoactivator-1 (PGC1). Public health nutrition. 2007;10(10A):1132-7.

35.       Ye L, Wu J, Cohen P, Kazak L, Khandekar MJ, Jedrychowski MP, et al. Fat cells directly sense temperature to activate thermogenesis. Proceedings of the National Academy of Sciences. 2013;110(30):12480-5.

36.       Goldwasser J, Cohen PY, Yang E, Balaguer P, Yarmush ML, Nahmias Y. Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: role of PPARα, PPARγ and LXRα. PLoS One. 2010;5(8):e12399.

37.       Chen M, J Norman R, K Heilbronn L. Does in vitro fertilisation increase type 2 diabetes and cardiovascular risk? Current diabetes reviews. 2011;7(6):426-32.

38.       Dong W, Guo W, Wang F, Li C, Xie Y, Zheng X, et al. Electroacupuncture upregulates SIRT1-dependent PGC-1α expression in SAMP8 Mice. Medical science monitor: international medical journal of experimental and clinical research. 2015;21:3356.

39.       Uguccioni G, Hood DA. The importance of PGC-1α in contractile activity-induced mitochondrial adaptations. American Journal of Physiology-Endocrinology and Metabolism. 2010;300(2):E361-E71.

40.       Olusi S. Obesity is an independent risk factor for plasma lipid peroxidation and depletion of erythrocyte cytoprotectic enzymes in humans. International Journal of Obesity & Related Metabolic Disorders. 2002;26(9).

41.       Schilling MM, Oeser JK, Boustead JN, Flemming BP, O'brien RM. Gluconeogenesis: re-evaluating the FOXO1–PGC-1α connection. Nature. 2006;443(7111):E10.

42.       Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low‐volume high‐intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. The Journal of physiology. 2010;588(6):1011-22.

43.       Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, LeBrasseur NK, et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. Journal of Biological Chemistry. 2007;282(41):30014-21.

44.       Ye J. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes. Frontiers of medicine. 2015;9(2):139-45.

45.       Quinn L, Anderson B, Conner J, Pistilli E, Wolden-Hanson T. Overexpression of interleukin-15 in mice promotes resistance to diet-induced obesity, increased insulin sensitivity, and markers of oxidative skeletal muscle metabolism. Int J Infereron Cytokine Mediator Res. 2011;3:29-42.

46.       Gurd BJ, Perry CG, Heigenhauser GJ, Spriet LL, Bonen A. High-intensity interval training increases SIRT1 activity in human skeletal muscle. Applied Physiology, Nutrition, and Metabolism. 2010;35(3):350-7.

47.       Pardo PS, Boriek AM. The physiological roles of Sirt1 in skeletal muscle. Aging (Albany NY). 2011;3(4):430-7.

48.       Olesen J, Kiilerich K, Pilegaard H. PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch. 2010;460(1):153-62.

49.       Donnelly JE, Smith B, Jacobsen DJ, Kirk E, DuBose K, Hyder M, et al. The role of exercise for weight loss and maintenance. Best Practice & Research Clinical Gastroenterology. 2004;18(6):1009-29.

50.       Rowe GC, El-Khoury R, Patten IS, Rustin P, Arany Z. PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle. PloS one. 2012;7(7):e41817.

51.       Thyfault JP, Cree MG, Zheng D, Zwetsloot JJ, Tapscott EB, Koves TR, et al. Contraction of insulin-resistant muscle normalizes insulin action in association with increased mitochondrial activity and fatty acid catabolism. American Journal of Physiology-Cell Physiology. 2007;292(2):C729-C39.

52.       Lira VA, Benton CR, Yan Z, Bonen A. PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity. American Journal of Physiology-Endocrinology and Metabolism. 2010;299(2):E145-E61.

53.       Moreno-Navarrete JM, Ortega F, Moreno M, Xifra G, Ricart W, Fernández-Real JM. PRDM16 sustains white fat gene expression profile in human adipocytes in direct relation with insulin action. Molecular and cellular endocrinology. 2015;405:84-93.

54.       Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circulation research. 2007;100(10):1512-21.

55.       Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proceedings of the National Academy of Sciences. 2007;104(31):12861-6.

56.       Cross WL, Roby MA, Deschenes MR, Harris MB. Myocardial SIRT1 expression following endurance and resistance exercise training in young and old rats. The FASEB Journal. 2008;22(1 Supplement):753.1-.1.

57.       Cariello M, Moschetta A. Fibroblast growth factor 21: a new liver safeguard. Hepatology. 2014;60(3):792-4.

58.       Izumiya Y, Bina HA, Ouchi N, Akasaki Y, Kharitonenkov A, Walsh K. FGF21 is an Akt-regulated myokine. FEBS letters. 2008;582(27):3805-10.

59.       Luo Y, McKeehan WL. Stressed liver and muscle call on adipocytes with FGF21. Frontiers in endocrinology. 2013;4:194.

60.       Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim Y-N, et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nature medicine. 2013;19(1):83-92.

61.       Catoire M, Mensink M, Kalkhoven E, Schrauwen P, Kersten S. Identification of human exercise-induced myokines using secretome analysis. Physiological genomics. 2014;46(7):256-67.

62.       Cuevas-Ramos D, Almeda-Valdés P, Meza-Arana CE, Brito-Córdova G, Gómez-Pérez FJ, Mehta R, et al. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One. 2012;7(5):e38022.

63.       Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology. 2012;8(8):457-65.

64.       Scalzo RL, Peltonen GL, Giordano GR, Binns SE, Klochak AL, Paris HL, et al. Regulators of human white adipose browning: evidence for sympathetic control and sexual dimorphic responses to sprint interval training. PLoS One. 2014;9(3):e90696.

65.       Besse-Patin A, Montastier E, Vinel C, Castan-Laurell I, Louche K, Dray C, et al. Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. International Journal of Obesity. 2014;38(5):707-13.

66.       Tang Q-Q, Otto TC, Lane MD. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(26):9607-11.

67.       Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vázquez MJ, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 2012;149(4):871-85.

68.       Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nature medicine. 2013;19(10):1252.

69.       Argilés JM, López-Soriano FJ, Busquets S. Therapeutic potential of interleukin-15: a myokine involved in muscle wasting and adiposity. Drug discovery today. 2009;14(3):208-13.

70.       Fuster G, Busquets S, Figueras M, Ametller E, Fontes de Oliveira CC, Oliván M, et al. PPARdelta mediates IL15 metabolic actions in myotubes: effects of hyperthermia. Int J Mol Med. 2009;24(1):63-8.

71.       Nielsen AR, Mounier R, Plomgaard P, Mortensen OH, Penkowa M, Speerschneider T, et al. Expression of interleukin‐15 in human skeletal muscle–effect of exercise and muscle fibre type composition. The Journal of physiology. 2007;584(1):305-12.

72.       Harcourt LJ, Holmes AG, Gregorevic P, Schertzer JD, Stupka N, Plant DR, et al. Interleukin-15 administration improves diaphragm muscle pathology and function in dystrophic mdx mice. The American journal of pathology. 2005;166(4):1131-41.

73.       Pistilli EE, Siu PM, Alway SE. Interleukin-15 responses to aging and unloading-induced skeletal muscle atrophy. American Journal of Physiology-Cell Physiology. 2007;292(4):C1298-C304.

74.       Ruderman NB, Keller C, Richard A-M, Saha AK, Luo Z, Xiang X, et al. Interleukin-6 regulation of AMP-activated protein kinase potential role in the systemic response to exercise and prevention of the metabolic syndrome. Diabetes. 2006;55(Supplement 2):S48-S54.

75.       Kelly M, Gauthier M-S, Saha AK, Ruderman NB. Activation of AMP-activated protein kinase by interleukin-6 in rat skeletal muscle association with changes in cAMP, energy state, and endogenous fuel mobilization. Diabetes. 2009;58(9):1953-60.

76.       Quinn LS, Anderson BG, Strait-Bodey L, Stroud AM, Argilés JM. Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. American Journal of Physiology-Endocrinology and Metabolism. 2009;296(1):E191-E202.